Proteoglycans of Hyaline Cartilage

نویسنده

  • STEFAN LOHMANDER
چکیده

Proteoglycan monomers from guinea-pig costal cartilage, bovine nasal and bovine tracheal cartilage were observed in the electron microscope after being spread in a monomolecular layer with cytochrome c. The proteoglycan molecule appeared as an extended central core filament to which side-chain filaments were attached at various intervals. The molecules from the three sources displayed great ultrastructural similarities. On average, the core filament was about 290nm long, there were about 25 side-chain filaments per core filament, the side-chain filaments were about 45nm long, and the distance between the attachment points of the side-chain filaments to the core filament was about 11 nm. With regard to overall size of the molecules, no evidence of distinct subpopulations was obtained. Good correlation was found between ultrastructural data for the proteoglycan molecules and chemical data obtained by enzyme digestions and gel chromatography. Together these data strongly support the interpretation of the electron-microscopic pictures as indicating a central filament corresponding to the protein core and side-chain filaments corresponding to the chondroitin sulphate chain clusters of the proteoglycan monomers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cartilage tissue engineering using cryogenic chondrocytes.

OBJECTIVE To generate in vitro hyaline cartilage from cryogenically preserved human septal chondrocytes in a simulated microgravity environment on a 3-dimensional biodegradable scaffolding material. METHODS In this experiment, cryogenically frozen chondrocytes were thawed and cultured in a monolayer in serum-based chondrocyte media. They were seeded onto 3-dimensional biopolymer scaffolds in ...

متن کامل

Changes of rabbit meniscus influenced by hyaline cartilage injury of osteoarthritis.

PURPOSE Osteoarthritis (OA) is a common disease in the elderly population. Most of the previous OA-related researches focused on articular cartilage degeneration, osteophyte formation and synovitis etc. However, the role of the meniscus in these pathological changes has not been given enough attention. The goal of our study was to find the pathological changes of the meniscus in OA knee and det...

متن کامل

Cartilage Tissue Engineering: The Role of Extracellular Matrix (ECM) and Novel Strategies

Articular cartilage is a hyaline cartilage that consists primarily of extracellular matrix with a sparse population of cells, lacking blood vessels, lymphatic vessels and nerves. The only cell type within cartilage is the chondrocyte and has a low level of metabolic activity with little or no cell division and is the responsible for maintaining in a low-turnover state the unique composition and...

متن کامل

Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the Swarm rat chondrosarcoma.

Cultured chondrocytes from the Swarm rat chondrosarcoma incorporate [35S]sulfate into proteoglycans typical of hyaline cartilage. The movement of newly synthesized proteoglycans from inside the cells into the extracellular matrix and, finally, into the culture medium was examined by measuring the distribution of 35S-labeled proteoglycans in the medium, a 4 M guanidine HCl extract of the cell la...

متن کامل

Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes.

OBJECTIVE Hsa-miR-148a expression is decreased in Osteoarthritis (OA) cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. DESIGN OA chondrocytes were transfected with a miRNA precursor for hsa-miR-148a or a miRNA precursor negative control. After 3, ...

متن کامل

Capability of Cartilage Extract to In Vitro Differentiation of Rat Mesenchymal Stem Cells (MSCs) to Chondrocyte Lineage

The importance of mesenchymal stem cells (MSCs), as adult stem cells (ASCs) able to divide into a variety of different cells is of utmost importance for stem cell researches. In this study, the ability of cartilage extract to induce differentiation of rat derived omentum tissue MSCs (rOT-MSCs) into chondrocyte cells (CCs) was investigated. After isolation of rOT-MSCs, they were co-cultured with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005